Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Distributed Computing to Blockchain: Architecture, Technology, and Applications ; : 415-424, 2023.
Artículo en Inglés | Scopus | ID: covidwho-20243398

RESUMEN

Due to improvements in information and communication technology and growth of sensor technologies, Internet of Things is now widely used in medical field for optimal resource management and ubiquitous sensing. In hospitals, many IoT devices are linked together via gateways. Importance of gateways in modernization of hospitals cannot be overstated, but their centralized nature exposes them to a variety of security threats, including integrity, certification, and availability. Block chain technology for level monitoring in oxygen cylinders is a scattered record containing the data related to oxygen levels in the cylinder, patient's name, patient's ID number, patient's medical history, and all connected information carried out and distributed among the hospitals (nodes) present in the locality (network). Designing an oxygen level monitoring technique in an oxygen cylinder used as the support system for COVID-19-affected patients is a challenging task. Monitoring the level of oxygen in the cylinders is very important because they are used for saving the lives of the patients suffering from COVID-19. Not only the COVID-19 patients are dependent on this system, but this system will also be helpful for other patients who require oxygen support. The present scenario many COVID-19 hospitalized patients rely upon oxygen supply through oxygen cylinders and manual monitoring of oxygen levels in these cylinders has become a challenging task for the healthcare professionals due to overcrowding. If this level monitoring of oxygen cylinders are automated and developed as a mobile App, it would be of great use to the medical field, saving the lives of the patients who are left unmonitored during this pandemic. This proposal is entitled to develop a system to measure oxygen level using a smartphone App which will send instantaneous values about the level of the oxygen inside the cylinder. Pressure sensors and load cell are fitted to the oxygen cylinders, which will measure the oxygen content inside the cylinder in terms of the pressure and weight. The pressure sensors and load cells are connected to the Arduino board and are programmed to display the actual level of oxygen inside the cylinder in terms of numerical values. A beep sound is generated as an indicator to caution the nurses and attendants of the patients regarding the level of the oxygen inside the cylinder when it is only 15% of the total oxygen level in the cylinder in correlation to the pressure and weight. The signal with respect to the level corresponding to the measured pressure and weight of the cylinder is further transmitted to the monitoring station through Global System for Mobile communication (GSM). Graphical display is used at monitoring end to indicate the level of oxygen inside all oxygen cylinders to facilitate actions like 100% full, 80% full, 60% full, 40% full, 20% full which states that either the oxygen cylinder is in good condition, or requires a replacement of empty cylinders with filled ones in correlation to the pressure and weight being sensed by the sensors. The levels of the oxygen monitored inside the cylinder and other related data can also be stored on a cloud storage which will facilitate the retrieval of the status at any point of time, as when required by the physicians and nurses. These results reported, are valued in monitoring the level of the oxygen cylinder remotely connected to the patients, affected by COVID-19, using a smartphone App. This mobile phone App is an effective tool for investigating the oxygen cylinder level used as a life-support system for COVID-19-affected patients. A virtual model of the partial system is developed using TINKER CAD simulation package. In real time, the sensor data analysis with cloud computing will be deployed to detect and track the level of the oxygen cylinders. © 2023 Elsevier Inc. All rights reserved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA